SUPPORTING INFORMATION

Influence of C–H/X (X = S, Cl, N, Pt/Pd) interactions on the molecular and crystal structures of Pt(II) and Pd(II) complexes with thiomorpholine-4-carbonitrile: crystallographic, thermal and DFT study

Predrag Ristić^a, Vladimir Blagojević^b, Goran Janjić^c, Marko Rodić^d, Predrag Vulić^e, Morgan Donnard^f, Mihaela Gulea^g, Agnieszka Chylewska^h, Mariusz Makowski^h, Tamara Todorović^a, Nenad Filipović^{i,*}

^a University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia

^bInstitute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/IV, 11000 Belgrade, Serbia

^cInstitute of Chemistry, Metallurgy and Technology, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia

^dDepartment of Chemistry, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia

^eFaculty of Mining and Geology, University of Belgrade, Đušina 5, 11000 Belgrade, Serbia

^fUniversité de Strasbourg, Université de Haute-Alsace, CNRS, LIMA – UMR 7042, ECPM, 67000 Strasbourg, France

^gUniversité de Strasbourg, CNRS, LIT – UMR 7200, Faculty of Pharmacy, 67000 Strasbourg, France

^hFaculty of Chemistry, University of Gdansk, Wita Stwosza 63, PL80-308 Gdansk, Poland

ⁱ University of Belgrade - Faculty of Agriculture, Nemanjina 6, 11000 Belgrade, Serbia

*Corresponding author: Nenad Filipović, PhD, Associate Professor, University of Belgrade - Faculty of Agriculture, Nemanjina 6, 11000 Belgrade, Serbia; E-mail: nenadf@agrif.bg.ac.rs

SUPLEMENTARY FIGURES AND SCHEMES

Figure S1. IR spectra of gaseous decomposition products obtained during TG experiments with **1**(A) and **2** (B).

Figure S2. The 3D presentation of thermal decompositions *versus* time together with IR spectra of their gaseous products: (a) 1; (b) 2.

Figure S3. Overlapped experimental (blue) and calculated (red) powder XRD diffractograms of 1 (A) and 2 (B).

Figure S4. Comparison between experimental powder XRD patterns of **1** (left) and **2** (right) with simulated patterns of their analogues with different position of M–S bond with respect to the TM-CN ring chair conformation.

Figure S5. Optical microscope images of Pt- (left) and Pd-complex (right) showing as-obtained single crystals.

Figure S6. SEM images of Pt- (left) and Pd-complex (right) after reduction to powder for XRD measurements.

Figure S7. ¹H NMR spectra of TM-CN in DMSO-d₆ (A) and CD₃NO₂ (B).

Figure S8. ¹³C NMR spectra of TM-CN in DMSO-*d*₆ (A) and CD₃NO₂ (B).

Figure S9. 1 H (A) and 13 C NMR (B) spectra of **1** in DMSO- d_6 .

Figure S10. COSY spectrum of 1 in DMSO- d_6 .

Figure S11. NOESY spectrum of 1 in DMSO- d_6 .

Figure S12. ${}^{1}H-{}^{13}C$ HSQC spectrum of 1 in DMSO- d_6 .

Figure S13. ¹H (A) and ¹³C NMR (B) spectra of 1 in CD₃NO₂.

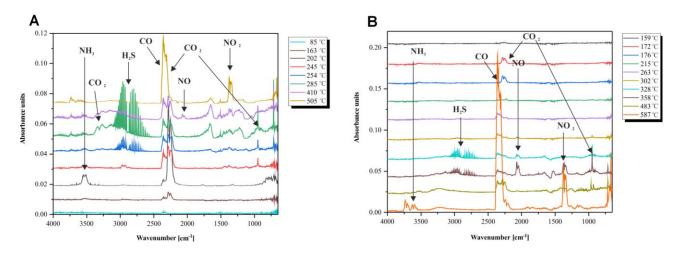
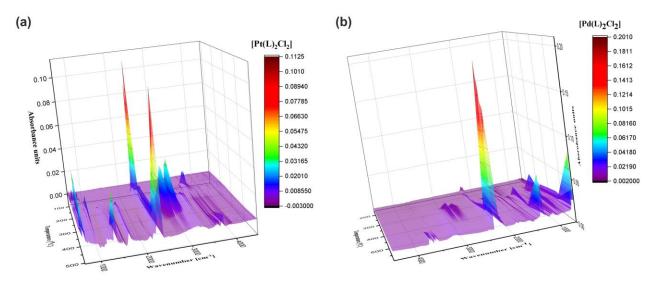

Figure S14. 1 H (A) and 13 C NMR (B) spectra of **2** in DMSO- d_6 .

Figure S15. ¹H (A) and ¹³C NMR (B) spectra of 2 in CD₃NO₂.

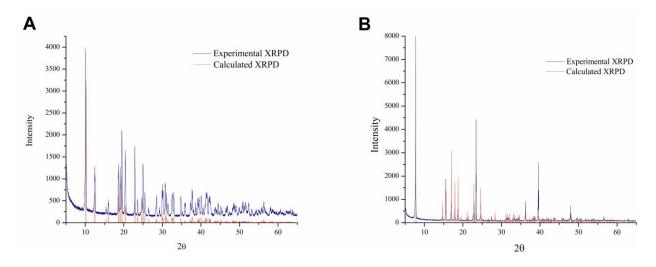
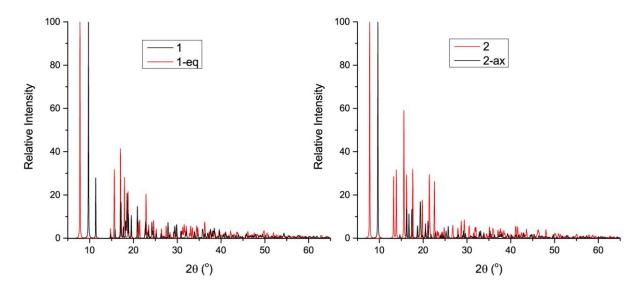
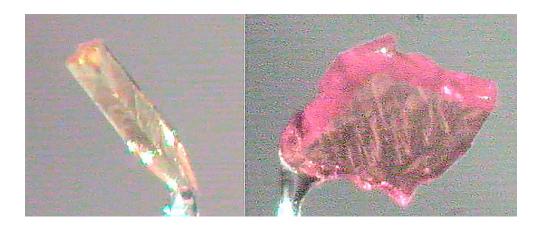

Scheme S1. Labelling of atoms used for NMR signal assignments.

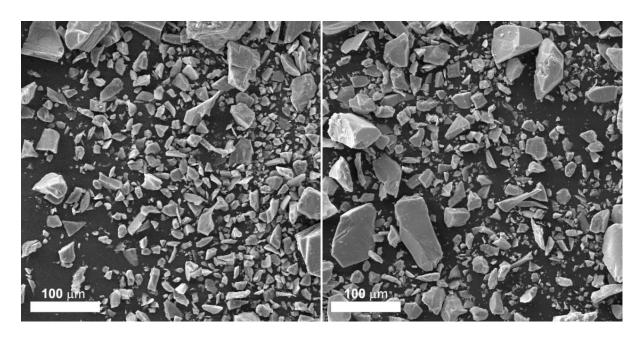
SUPLEMENTARY TABLES

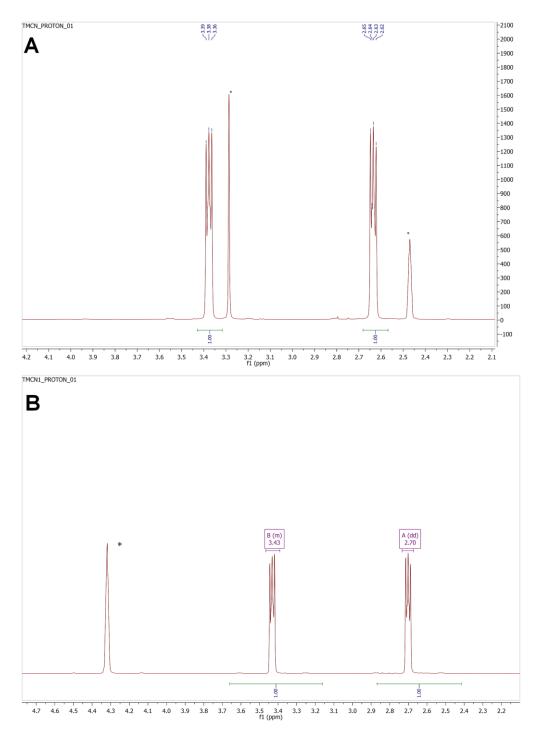
- **Table S1.** Experimental vibrational frequencies (cm⁻¹) and signals description of complexes studied.
- **Table S2.** Crystal data and structure refinement for 1 and 2.
- **Table S3.** Selected bond lengths (Å) and angles (°) for complexes 1 and 2.
- **Table S4.** Results of energy calculations for C-H/Cl-M, C-H/S-M, C-H/M and C-H/N \equiv C interactions (M= Pd(II) and Pt(II)) at wb97xd/6-31+g**+lanl2dz level of theory. Energies are expressed in kcal/mol.
- **Table S5.** C-H/M interactions obtained from the periodic calculations of axial and equatorially coordinated Pd and Pt.
- **Table S6.** ¹H NMR spectral data (399.74 MHz) in DMSO-*d*₆ and CD₃NO₂ at 298 K for TM-CN and complexes **1** and **2**.
- **Table S7**. 13 C NMR spectral data (100.53 MHz) in DMSO- d_6 and CD₃NO₂ at 298 K for TM-CN and complexes **1** and **2**.

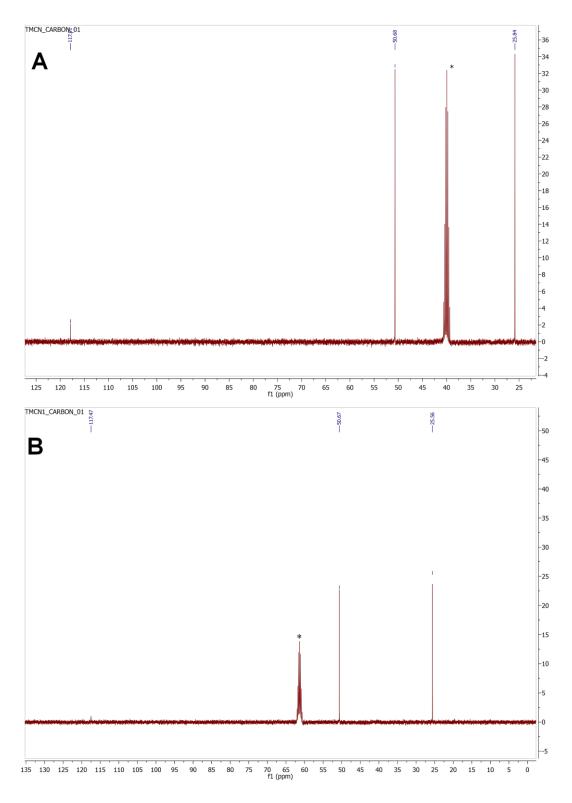
Figure S1. IR spectra of gaseous decomposition products obtained during TG experiments with 1(A) and 2(B).

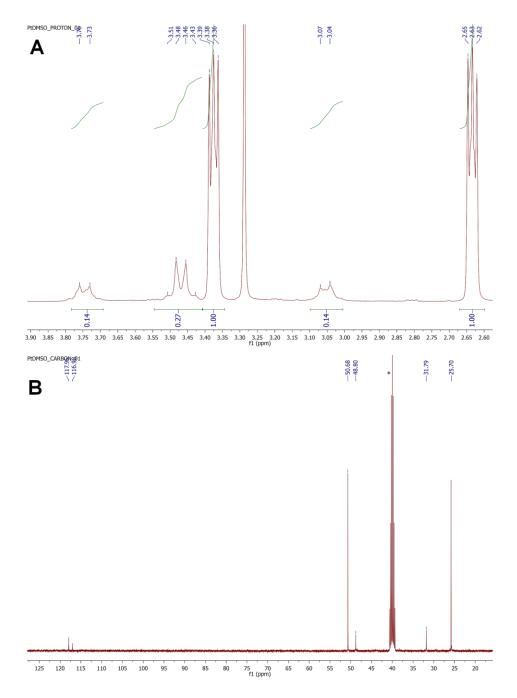
Figure S2. The 3D presentation of thermal decompositions *vs* time together with IR spectra of their gaseous products: (a) **1**; (b) **2**.

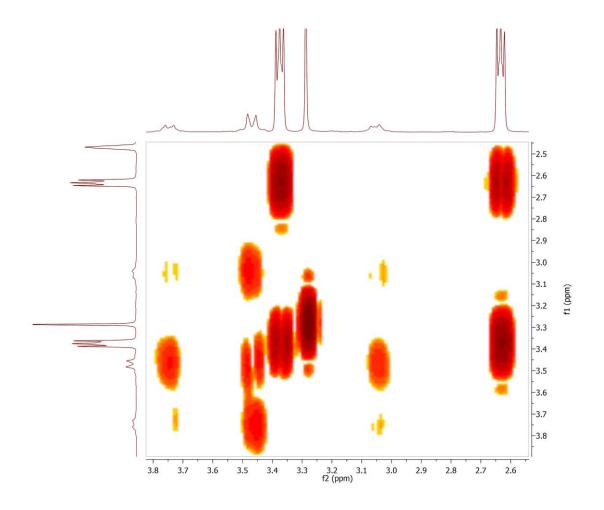




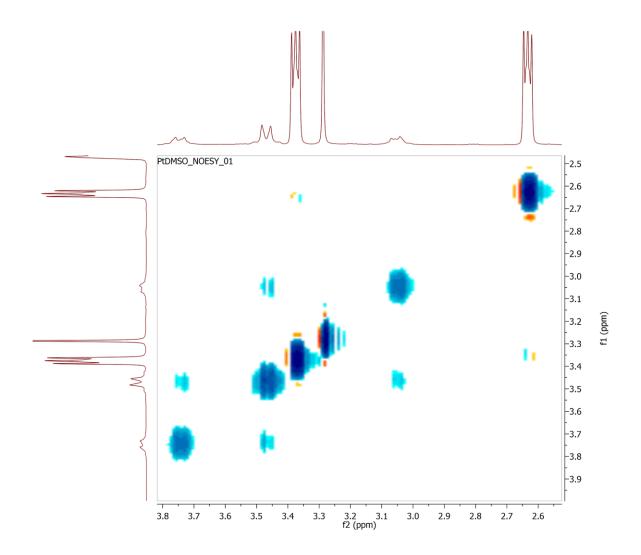

Figure S3. Overlapped experimental (blue) and calculated (red) powder XRD diffractograms of 1 (A) and 2 (B).


Figure S4. Comparison between experimental powder XRD patterns of **1** (left) and **2** (right) with simulated patterns of their analogues with different TM-CN conformation of metal-sulfur bond.


Figure S5. Optical microscope images of Pt- (left) and Pd-complex (right) showing as-obtained single crystals.


Figure S6. SEM images of Pt- (left) and Pd-complex (right) after reduction to powder for XRD measurements.


Figure S7. 1 H NMR spectra of TM-CN in DMSO- d_{6} (A) and CD₃NO₂ (B).


Figure S8. 13 C NMR spectra of TM-CN in DMSO- d_6 (A) and CD₃NO₂ (B).

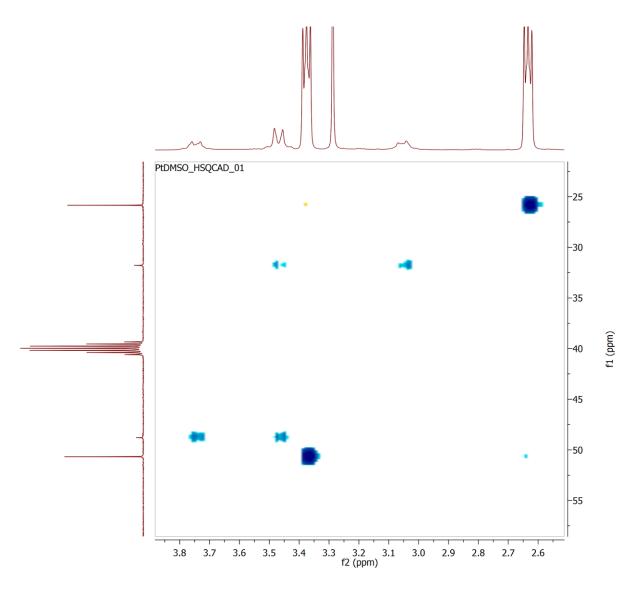

Figure S9. 1 H (A) and 13 C NMR (B) spectra of **1** in DMSO- d_6 .

Figure S10. COSY spectrum of **1** in DMSO- d_6 .

Figure S11. NOESY spectrum of **1** in DMSO- d_6 .

Figure S12. ${}^{1}\text{H}-{}^{13}\text{C}$ HSQC spectrum of **1** in DMSO- d_6 .

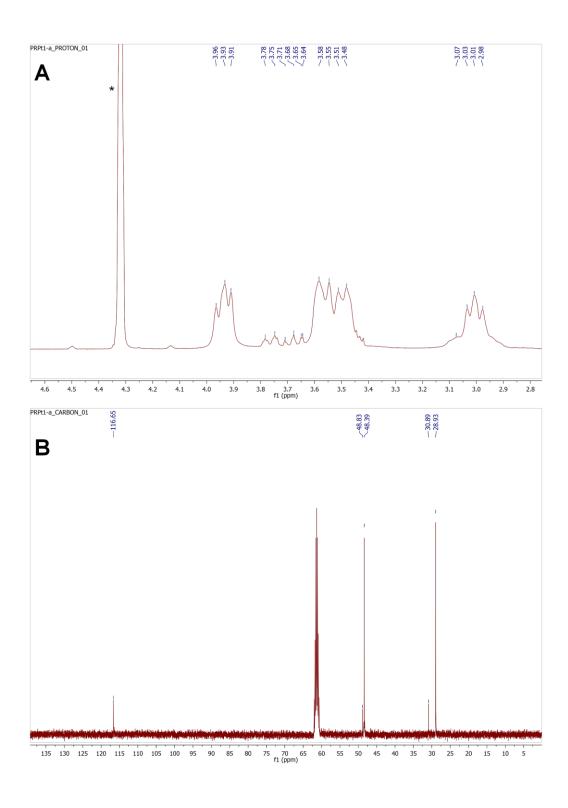
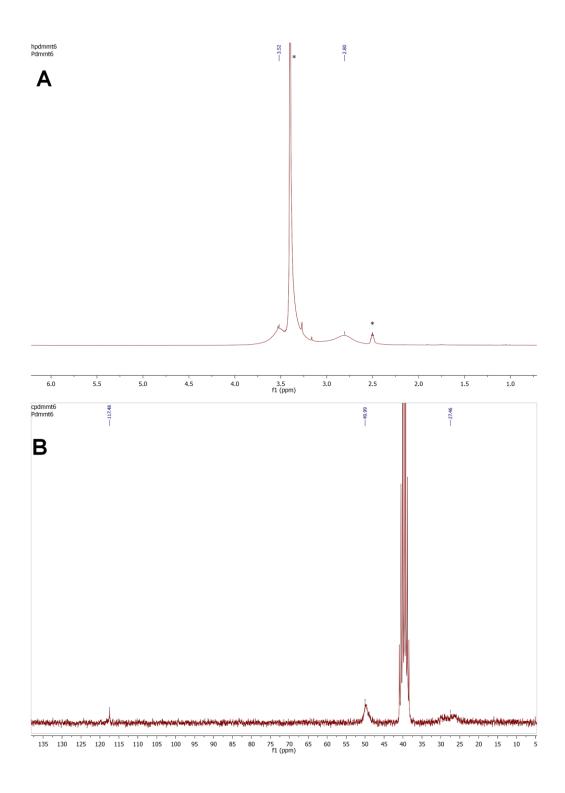



Figure S13. ^{1}H (A) and ^{13}C NMR (B) spectra of 1 in $CD_{3}NO_{2}$.

Figure S14. 1 H (A) and 13 C NMR (B) spectra of **2** in DMSO- d_6 .

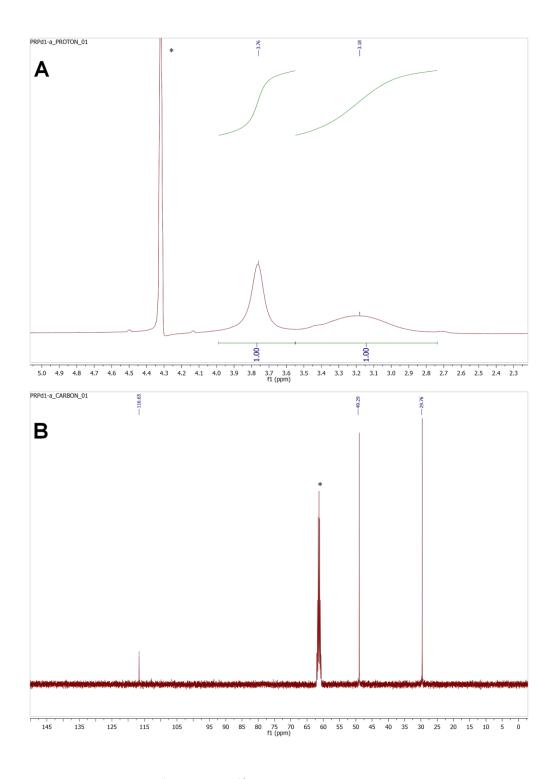


Figure S15. 1 H (A) and 13 C NMR (B) spectra of 2 in CD₃NO₂.

Table S1. Experimental vibrational frequencies (cm^{-1}) and signals description of complexes studied.

1			2		
UATR	IR	Vibrational	UATR	IR	Vibrational
experimental	intensity	assignments	experimental	intensity	assignments
frequency	(%)		frequency (cm ⁻¹)	(%)	
(cm ⁻¹)					
3601 vw	(92)	trans-	3461 vw	(93)	trans-
3355 w	(92)	geometry	3354 w	(93)	geometry
2997 w	(91)		2995 ms	(90)	CH ₂ sym
2980 w	(89)	CH ₂ sym	2925 vw	(93)	CH ₂ asym
2916 vw	(91)	CH ₂ asym	2263 ms	(88)	C=N
2867 vw	(91)		2214 s	(80)	_ ν C≡N
2208 vs	(59)	ν C≡N	1649 ms	(89)	
1652 w	(93)		1597 ms	(89)	- C C
1598 w	(92)	v C-S	1546 ms	(91)	ν C-S
1454 s	(82)	V C-S	1401 s	(81)	
1420 s	(79)		1277 s	(84)	ν C-C
1391 s	(74)		1197 mw	(88)	CH ₂ wag
1364 s	(78)		1166 mw	(86)	CH ₂ twist
1283 s	(82)		1113 mw	(87)	_
1227 ms	(87)	v C-C CH ₂ wag	1029 s	(85)	b C≡N
1197 ms	(87)	CH ₂ wag CH ₂ twist	946 vs	(67)	
1176 ms	(83)	- CIIZ (WIST	832 w	(91)	
1147 ms	(82)		734 mw	(89)	CH ₂ rock
1120 s	(78)		648 mw	(89)	
1027 s	(79)	b C≡N	573 mw	(86)	
980 ms	(83)	CH ₂ rock	543 mw	(85)	b NCN

1			2		
UATR IR Vibr		Vibrational	UATR	IR	Vibrational
experimental	intensity	assignments	experimental	intensity	assignments
frequency	(%)		frequency (cm ⁻¹)	(%)	
(cm ⁻¹)					
949 vs	(56)		504 s	(79)	ν Pd-S
726 ms	(88)		374 vw	(90)	
580 s	(84)		364 w	(84)	
540 ms	(88)	b NCN	355 vs	(56)	v Pd-Cl
505 vs	(74)	ν Pt-S	333 s	(78)	
354 vs	(53)		319 vs	(28)	
347 vs	(25)	v Pt-Cl			
339 vs	(10)	- v r t-Ci			
321 vs	(22)				

Abbreviations used: v = streching; b = bending; wag = wagging; twist = twisting; rock = rocking; sym = symmetric stretch; asym = asymmetric stretch; w = weak; m = medium; s = strong; ms = medium strong; vs = very strong; vw = very weak.

 $\textbf{Table S2.} \ \textbf{Crystal data and structure refinement for 1 and 2.}$

Compound	1	2
Molecular formula	$C_{10}H_{16}Cl_2N_4PtS_2$	$C_{10}H_{16}Cl_2N_4PdS_2$
Formula weight	522.38	433.69
Temperature (K)	294(2)	294(2)
Wavelength (Å)	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic
Space group	I 2/a	$P 2_1/c$
<i>a</i> (Å)	9.9954(3)	11.4399(4)
b (Å)	11.0764(3)	7.0711(2)
c (Å)	14.8663(4)	9.5192(4)
β (°)	107.508(3)	96.179(4)
Volume (Å ³)	1569.64(7)	765.56(5)
Z	4	2
$\rho_{\text{calc}} (Mg/m^3)$	2.211	1.881
$\mu (\text{mm}^{-1})$	9.537	1.82
F(000)	992	432
Crystal size (mm)	$0.61\times0.14\times0.11$	$0.51 \times 0.49 \times 0.14$
θ Range for data collection (°)	2.33 – 28.93	3.39 – 29.06
Reflections collected	7449	25252
Independent reflections	1903 [$R(int) = 0.046$]	3440 [R(int) = 0.070]
Absorption correction	Gaussian	Analytical
Refinement method	full-matrix leas	st-squares on F^2
Data/restraints/parameters	1903/0/89	3440/0/90
Goodness-of-fit on F^2	1.27	1.25
Final <i>R</i> indexes $[I > 2\sigma(I)]$	$R_1 = 0.0327, wR_2 = 0.0802$	$R_1 = 0.0505, wR_2 = 0.1176$
Final <i>R</i> indexes [all data]	$R_1 = 0.0387, wR_2 = 0.0835$	$R_1 = 0.0551, wR_2 = 0.1211$
Largest diff. peak and hole, e Å ⁻³	1.06 and –2.18	1.30 and -1.66

Table S3. Selected bond lengths (Å), bond angles (°) and torsional angles (°) for complexes

	1	2
M1 ^a –C11	2.3059(11)	2.2981(9)
M1-S1	2.3135(10)	2.3121(9)
S1-C1	1.816(5)	1.823(4)
S1-C3	1.810(5)	1.808(4)
N1-C2	1.463(6)	1.471(6)
N1-C5	1.315(6)	1.317(6)
N1-C4	1.454(6)	1.452(6)
C11–M1–S1 ⁱ	86.43(4)	95.34(3)
Cl1-M1-Cl1 ⁱ	180	180
S1-M1-C11	93.57(4)	84.66(3)
S1-M1-S1 ⁱ	180	180
C5-N1-C4	118.1(4)	121.7(4)
C5-N1-C2	118.1(4)	119.2(4)
C4-N1-C2	117.6(4)	118.2(3)
M1 ^a –S1–C1–C2	60.89	172.48
M1 ^a -S1-C3-C4	59.80	167.98

a M = Pt in 1; M = Pd in 2. i = 1 - x, 1 - y, 1 - z in 1; i = 1 - x, - y, 1 - z in 2

Table S4. Results of energy calculations for C–H/Cl–M, C–H/S–M, C–H/M and C–H/N \equiv C interactions (M = Pd, Pt) at wb97xd/6-31+g**+lanl2dz level of theory. Energies are expressed in kcal/mol.

d	C-H/	C-H/	C–H/	C-H/	C-H/	C-H/	C-H/NC	C-H/NC
a	Cl-Pd	Cl-Pt	S-Pd	S-Pt	Pd	Pt	(Pd)	(Pt)
2.50	0.09	0.06	0.85	0.56	-2.21	-1.82	-0.39	-0.39
2.70	-0.42	-0.44	-0.20	-0.44	-2.78	-2.70	-0.56	-0.56
2.80	-0.54	-0.55	-0.47	-0.69	-2.84	-2.88	-0.57	-0.57
2.90	-0.59	-0.60	-0.63	-0.83	-2.80	-2.95	-0.56	-0.56
3.00	-0.60	-0.62	-0.72	-0.90	-2.71	-2.93	-0.54	-0.54
3.20	-0.58	-0.59	-0.75	-0.90	-2.43	-2.72	-0.48	-0.48
3.50	-0.46	-0.49	-0.65	-0.76	-1.92	-2.21	-0.39	-0.39

Table S5. C–H/M interactions obtained from the periodic calculations of axial and equatorially coordinated Pd and Pt.

Complex	Number of C–H/M	C–H/M distances (Å)
	interactions	
2	4	3.785, 4.050, 4.481, 4.933
1	5	3.326, 3.955, 4.798, 4.863, 5.892
2-ax	5	3.719, 4.681, 4.683, 5.164, 5.643
1-eq	4	3.682, 4.058, 4.478, 4.974

NC
$$H_{C}$$
 H_{C} H

Scheme S1. Labelling of atoms used for NMR signal assignments. M = Pt in 1; M = Pd in 2.

Table S6. ¹H NMR spectral data (399.74 MHz) in DMSO- d_6 and CD₃NO₂ at 298 K for TM-CN and complexes **1** and **2**.

	DMSO-d ₆	CD ₃ NO ₂
TM-CN	δ 3.40 - 3.36 (m, 4H, $C^{\beta}H_2$ = $C^{\beta}H_2$), 2.64 (dd, J = 6.2, 3.9 Hz, 4H, $C^{\alpha}H_2 = C^{\alpha}H_2$).	δ 3.47 - 3.39 (m, 4H, $C^{\beta}H_2 = C^{\beta}H_2$), 2.70 (dd, $J = 6.2$, 3.9 Hz, 4H, $C^{\alpha}H_2 = C^{\alpha}H_2$).
1	1-ax (minor): δ 3.75 (br. d, J = 12.1 Hz, 2H, $C^{\beta}H_{D} = C^{\beta'}H_{D'}$), 3.50 (br. s, 2H, $C^{\beta}H_{C} = C^{\beta'}H_{C'}$), 3.46 (br. s, 2H, $C^{\alpha}H_{B} = C^{\alpha'}H_{B'}$), 3.06 (br. d, J = 10.9 Hz, 1H, $C^{\alpha}H_{A} = C^{\alpha'}H_{A'}$).	1-ax (major): δ 3.93 (m, $C^{\beta}H_{D} = C^{\beta}H_{D}$), 3.56 (d, $J = 14.9$ Hz, $C^{\beta}H_{C} = C^{\beta}H_{C}$), 3.50 (d, $J = 12.1$ Hz, $C^{\alpha}H_{B} = C^{\alpha}H_{B}$), 3.01 (m, $C^{\alpha}H_{A} = C^{\alpha}H_{A}$).
	TM-CN (major): δ 3.38 (m, 4H, $C^{\beta}H_2 = C^{\beta}H_2$), 2.63 (m, 4H, $C^{\alpha}H_2 = C^{\alpha}H_2$).	1-eq (minor): δ 3.77 (d, $C^{\beta}H_{C} = C^{\beta'}H_{C'}$), 3.67 (m, $C^{\alpha}H_{A} = C^{\alpha'}H_{A'}$), 3.56 (ovlp., $C^{\beta}H_{D} = C^{\beta'}H_{D'}$), 3.07 (ovlp, $C^{\alpha}H_{B} = C^{\alpha'}H_{B'}$).
2	δ 3.52 (br. s, 4H, $C^{\alpha}H_2 = C^{\alpha'}H_2$), 2.80 (br. s, 4H, $C^{\alpha}H_2 = C^{\alpha'}H_2$)	$δ$ 3.76 (br. s, 4H, $C^{α}H_{2} = C^{α'}H_{2}$), 3.18 (br. s, 4H, $C^{α}H_{2} = C^{α'}H_{2}$)

Table S7. 13 C NMR spectral data (100.53 MHz) in DMSO- d_6 and CD₃NO₂ at 298 K for TM-CN and complexes **1** and **2**.

	DMSO-d ₆	CD ₃ NO ₂
TM-CN	δ 117.91 (C ^{γ}), 50.68 (C ^{β} = C ^{β}), 25.84 (C ^{α} = C ^{α}).	δ 117.47 (C^{γ}), 50.67 ($C^{\beta} = C^{\beta'}$), 25.56 ($C^{\alpha} = C^{\alpha'}$).
1	1-ax : δ 116.98 (C ^{γ}), 48.80 (C ^{β} = C ^{β}), 31.79 (C ^{α} = C ^{α}).	1-ax (major): δ 116.65 (C^{γ}), 48.39 ($C^{\beta} = C^{\beta'}$), 28.93 ($C^{\alpha} = C^{\alpha'}$).
	TM-CN : δ 117.96 (\mathbb{C}^{γ}), 50.68 ($\mathbb{C}^{\beta} = \mathbb{C}^{\beta'}$), 25.70 ($\mathbb{C}^{\alpha} = \mathbb{C}^{\alpha'}$).	1-eq (minor): δ 116.61 (C^{γ}), 48.83 ($C^{\beta} = C^{\beta'}$), 30.89 ($C^{\alpha} = C^{\alpha'}$).
2	δ 117.48 (C ^{γ}), 49.99 (C ^{β} = C ^{β}), 27.46 (C ^{α} = C ^{α}).	δ 116.65 (C ^γ), 49.29 (C ^β = C ^β), 29.76 (C ^α = C ^α).