SUPPLEMENTARY MATERIAL TO

Comparison of the advanced oxidation processes in the degradation of pharmaceuticals and pesticides in simulated urban wastewater: Principal component analysis and energy requirements

Miljana Radović Vučić^{*1}, Rada Baošić², Jelena Mitrović¹, Milica Petrović¹, Nena Velinov¹, Miloš Kostić¹, Aleksandar Bojić¹

¹The University of Niš, Faculty of Sciences and Mathematics, Višegraska 33, 18000 Niš, Serbia ²University of Belgrade, Faculty of Chemistry, Studentski trg 12, 11000 Belgrade, Serbia

Text S1

All mobile phases were prepared volumetrically from individually measured aliquots and were degassed for 15 min in an ultrasonic bath before use. A mixture of phosphate buffer and acetonitrile (53:47, v/v) was used as a mobile phase for the determination of atenolol. Detection was carried out using a detector at 230 nm (Kumar et al., 2010). Atrazine was monitored at the wavelength of 220 nm and the isocratic mobile phase was pure acetonitrile and purified water (60:40, v/v) (Atarodia and Faghihiana, 2019). The chromatographic conditions used for cyprodinil were as follows: eluent A, water; eluent B, acetonitrile; gradient, 35–60% B over the first 3.5 min and then was stable for 20 min. The chromatograms were performed at 280nm (Vaquero-Fernandez et al., 2008). The mobile phase 0.1% formic acid and methanol (53:50, v/v) was used to determine the dicamba and the detector wavelength was set to 220 nm (Desipioa et al., 2019). The following chromatographic conditions were used for the enalapril assay method. The mobile phase contains a mixture of 0.02M NaH₂PO₄ buffer (pH 3.0 adjusted with H₃PO₄)

and acetonitrile in the ratio 95:5 (v/v) (Koppala et al., 2017). The analyses of the ibuprofen decay were carried out isocratically with a methanol/water (with 1% phosphoric acid) 68:32 (v/v) mixture as the mobile phase and detector wavelength was 228 nm (Loaiza-Ambuludi et al., 2013). The mobile phase for clomazone detection was methanol and water (65:35, v/v), adjusted to pH 4.0 with phosphoric acid and quantification was carried out with UV detection at 220 nm (Zanella et al., 2000). For the determination of loperamide the detector was set to 226 nm. Compound was eluted using an isocratic mobile phase consisting of 0.1% sodium-octansulphonate, 0.05% triethylamine, 0.1% ammonium hydroxide (buffer) in water:acetonitrile (45:55, v/v). The mobile phase was adjusted to pH 3.2 with phosphoric acid (Velinov et al., 2019).

Process	Concentration ion (mmol dm ⁻³)	Decolorization (%)		
		HCO ₃ -	CO ₃ ²⁻	Cl
	0	40.114	40.114	40.114
	10.0	40.733	33.548	38.563
UV/H_2U_2	100.0	45.514	46.584	37.541
	1 000.0	46.126	48.387	31.254
	0	15.473	15.473	15.473
LIV/porsulfata	10.0	16.579	10.014	13.192
0 v/persuitate	100.0	21.714	21.345	13.554
	1 000.0	22.031	21.945	10.672
	0	50.115	50.115	50.115
Fantan	10.0	/	/	48.374
renton	100.0	/	/	43.541
	1 000.0	/	/	40.051
	0	56.735	56.735	56.735
nhoto Fonton	10.0	/	/	54.784
photo-Fenton	100.0	/	/	50.053
	1 000.0	/	/	47.341
UV/TiO ₂	0	82.235	82.235	82.235
	10.0	82.907	75.033	80.571
	100.0	87.254	89.378	77.497
	1 000.0	88.001	91.545	70.369

Table S1. Effect of HCO_3^- , CO_3^{2-} and Cl^- ions concentrations on the removal efficiency of atenolol

Process	Concentration ion (mmol dm ⁻³)	Decolorization (%)		
		HCO ₃ -	CO ₃ ²⁻	Cl
	0	39.619	39.619	39.619
	10.0	41.213	31.046	37.718
UV/H_2U_2	100.0	44.578	46.832	35.491
	1 000.0	45.694	47.597	30.563
	0	66.895	66.895	66.895
LIV/porsulfata	10.0	67.548	60.064	64.677
0 v/persuitate	100.0	71.639	73.347	63.046
	1 000.0	72.056	75.218	56.421
	0	59.870	59.870	59.870
Fantan	10.0	/	/	56.012
renton	100.0	/	/	54.243
	1 000.0	/	/	50.377
	0	100	100	100
nhoto Fonton	10.0	/	/	91.407
photo-Fenton	100.0	/	/	87.153
	1 000.0	/	/	79.055
UV/TiO ₂	0	37.655	37.655	37.655
	10.0	38.975	30.043	36.045
	100.0	43.747	44.721	35.123
	1 000.0	44.098	46.798	29.348

Table S2. Effect of HCO_3^- , CO_3^{2-} and Cl^- ions concentrations on the removal efficiency of atrazine

Table S3. Effect of HCO_3^- , CO_3^{2-} and Cl^- ions concentrations on the removal efficiency of cyprodinil

Process	Concentration ion (mmol dm ⁻³)	Decolorization (%)		
		HCO ₃	CO ₃ ²⁻	CI
	0	94.362	94.362	94.362
	10.0	100	87.049	89.391
UV/H_2U_2	100.0	100	100	84.014
	1 000.0	100	100	77.553
	0	10.846	10.846	10.846
LIV/porsulfata	10.0	11.536	7.489	10.015
0 v/persunate	100.0	17.792	17.345	8.632
	1 000.0	18.041	18.098	6.749
	0	67.763	67.763	67.763
Fanton	10.0	/	/	65.637
renton	100.0	/	/	64.326
	1 000.0	/	/	57.721
	0	79.996	79.996	79.996
nhoto Fonton	10.0	/	/	77.341
photo-reliton	100.0	/	/	74.458
	1 000.0	/	/	67.364
UV/TiO ₂	0	92.606	92.606	92.606
	10.0	93.088	85.641	87.40
	100.0	97.397	98.377	82.17
	1 000.0	98.674	98.954	75.14

Process	Concentration ion (mmol dm ⁻³)	Decolorization (%)		
		HCO ₃ -	CO ₃ ²⁻	Cl
	0	77.818	77.818	77.818
	10.0	79.541	70.749	76.431
UV/H_2U_2	100.0	82.745	85.354	70.439
	1 000.0	83.639	87.092	65.728
	0	5.349	5.349	5.349
LIV/porsulfata	10.0	6.458	4.015	5.301
0 v/persunate	100.0	6.941	12.466	5.587
	1 000.0	7.526	13.952	4.012
	0	54.977	54.977	54.977
Fanton	10.0	1	/	51.052
renton	100.0	/	/	50.437
	1 000.0	1	/	45.731
	0	68.024	68.024	68.024
nhoto Fonton	10.0	/	/	66.347
photo-Fenton	100.0	/	/	65.291
	1 000.0	/	/	87.458
UV/TiO ₂	0	83.811	83.811	83.811
	10.0	83.359	76.047	82.578
	100.0	88.264	90.569	78.421
	1 000.0	90.021	92.515	72.693

Table S4. Effect of HCO_3^- , CO_3^{2-} and Cl^- ions concentrations on the removal efficiency of dicamba

Process	Concentration ion (mmol dm ⁻³)	Decolorization (%)		
		HCO ₃	CO ₃ ²⁻	CI
	0	39.115	39.115	39.115
	10.0	40.075	32.043	38.346
UV/H_2U_2	100.0	43.547	46.721	37.921
	1 000.0	45.034	48.798	32.395
	0	15.473	15.473	15.473
UW/porsulfata	10.0	16.639	11.397	13.459
0 v/persunate	100.0	22.594	22.658	13.365
	1 000.0	23.012	23.092	10.021
	0	57.115	57.115	57.115
Fanton	10.0	/	/	55.734
renton	100.0	/	/	50.526
	1 000.0	/	/	47.539
	0	66.735	66.735	66.735
nhoto Fonton	10.0	/	/	64.327
piloto-relitoli	100.0	/	/	63.568
	1 000.0	/	/	56.441
UV/TiO ₂	0	69.646	69.646	69.646
	10.0	70.358	63.576	67.592
	100.0	74.647	76.482	64.371
	1 000.0	75.951	78.391	57.834

Table S5. Effect of HCO_3^- , CO_3^{2-} and Cl^- ions concentrations on the removal efficiency of enalapril

Process	Concentration ion (mmol dm ⁻³)	Decolorization (%)		
		HCO ₃ -	CO ₃ ²⁻	CI
	0	58.747	58.747	58.747
	10.0	59.384	51.675	56.347
UV/H_2U_2	100.0	63.476	65.842	51.256
	1 000.0	64.291	67.361	49.418
	0	48.769	48.769	48.769
UW/porsulfata	10.0	49.538	41.365	46.452
0 v/persuitate	100.0	54.247	55.879	41.376
	1 000.0	55.396	56.348	40.018
	0	77.452	77.452	77.452
Fanton	10.0	/	/	75.723
renton	100.0	/	/	74.458
	1 000.0	/	/	67.614
	0	100	100	100
nhoto Fonton	10.0	/	/	100
pnoto-Penton	100.0	/	/	100
	1 000.0	/	/	100
UV/TiO ₂	0	48.747	48.747	48.747
	10.0	49.098	41.364	47.041
	100.0	55.027	55.217	46.695
	1 000.0	55.963	57.098	41.483

Table S6. Effect of HCO_3^- , CO_3^{2-} and Cl^- ions concentrations on the removal efficiency of ibuprofen

D	Concentration ion (mmol dm ⁻³)	Decolorization (%)		
Process		HCO ₃ -	CO ₃ ²⁻	Cl
	0	59.601	59.601	59.601
	10.0	60.381	52.731	57.347
UV/H_2U_2	100.0	65.753	66.645	54.621
	1 000.0	66.642	68.286	51.519
	0	38.587	38.587	38.587
LIV/monoulfata	10.0	39.346	31.876	36.421
UV/persulfate	100.0	45.721	45.019	34.798
	1 000.0	46.392	46.332	29.236
	0	58.611	58.611	58.611
Fanton	10.0	1	/	56.491
renton	100.0	/	/	53.015
	1 000.0	1	/	49.382
	0	69.601	69.601	69.601
nhoto Fonton	10.0	/	/	65.313
photo-Fenton	100.0	/	/	64.685
	1 000.0	/	/	57.291
UV/TiO ₂	0	79.167	79.167	79.167
	10.0	80.311	73.189	73.460
	100.0	84.465	86.356	72.319
	1 000.0	86.732	88.274	65.085

Table S7. Effect of HCO_3^- , CO_3^{2-} and Cl^- ions concentrations on the removal efficiency of clomazone

Process	Concentration ion (mmol dm ⁻³)	Decolorization (%)		
		HCO ₃ -	CO ₃ ²⁻	CI
	0	71.391	71.391	71.391
	10.0	72.391	65.189	67.491
UV/H_2U_2	100.0	76.457	76.356	66.337
	1 000.0	77.926	88.274	59.981
	0	58.278	58.278	58.278
LIV/porsulfata	10.0	59.931	51.364	57.371
0 v/persunate	100.0	64.275	65.279	53.956
	1 000.0	65.364	67.581	49.083
	0	81.391	81.391	81.391
Fanton	10.0	1	/	75.397
renton	100.0	1	/	74.451
	1 000.0	1	/	67.286
	0	100	100	100
nhoto Fonton	10.0	1	/	100
photo-reliton	100.0	1	/	100
	1 000.0	1	/	100
UV/TiO ₂	0	82.166	82.166	82.166
	10.0	83.176	76.347	76.639
	100.0	87.394	89.981	74.351
	1 000.0	89.852	92.654	66.082

Table S8. Effect of HCO_3^- , CO_3^{2-} and Cl^- ions concentrations on the removal efficiency of loperamide

References

Atarodia, H., Faghihiana, H., 2019. Selective photodegradation of atrazine by a novel molecularly imprinted nanophotocatalyst prepared on the basis of chitosan. J. Photochem. Photobiol. A. 382, 111892.

Desipioa, M.M., Van Bramerb, S.E., Thorpec, R., Sahaa, D., 2019. Photocatalytic and photofenton activity of iron oxide-doped carbon nitride in 3D printed and LED driven photon concentrator. J. Hazard. Mater. 376, 178–187.

Koppala, S., Reddy, V.R., Anireddy, J.S., 2017. User-Friendly HPLC Method Development and Validation for Determination of Enalapril Maleate and Its Impurities in Enalapril Tablets. J. Chromatogr. Sci. 1–10.

Kumar, N., Verma, N., Songh, O., Joshi, N., Singh, K.G., 2010. Estimation of Atenolol by Reverse Phase High Performance Liquid Chromatography. E-J. Chem. 7(3), 962–966.

Loaiza-Ambuludi, S., Panizza, M., Oturan, N., Özcan, A., Oturan, M.A., 2013. Electro-Fenton degradation of anti-inflammatory drug ibuprofen in hydroorganic medium. J. Electroanal. Chem. 702, 31–36.

Vaquero-Fernandez, L., Saenz-Hernaez, A., Sanz-Asensio, J., Fernandez-Zurbano, P., Sainz-Ramırez, M., Pons-Jubera, B., Lopez-Alonso, M., Epifanio-Fernandez, S.-I., Martınez-Soria, M.- T., 2008. Determination of cyprodinil and fludioxonil in the fermentative process of must by high-performance liquid chromatography-diode array detection. J. Sci. Food Agric. 88, 1943–1948.

Velinov N., Najdanović S., Radović M., Mitrović J., Kostić M., Bojić D., Bojić A., 2019. Biosorption of loperamide by lignocellulosic-Al₂O₃ hybrid: optimization, kinetics, isothermal and thermodynamic studies. Cellulose Chem. Technol. 53(1–2), 175–189.

Zanella, R., Primel, E.G., Goncalves, F.F., Martins A.F., 2000. Development and validation of a high-performance liquid chromatographic method for the determination of clomazone residues in surface water. J. Chromatogr. A. 904, 257–262.