Candidate Genes Involved in the Desiccation Tolerance

Vidovic M! Stevanovic S', Pantelic A², Veljovic-Jovanavic S3

\author{

1) Institute of Malecular Genetics and Genetic Engineering, Laboratorry for Plant Malecular Biolagy, University of Belgrade, Serria
 2) University of Belgrade, Fazulty of Chemistry, Studentski trg I2-IE, IIIDC Belgrade, Serbia
 3) Institute for Multidisciplinarry Research, University of Belgrade, Belgrade, Serbia
}

Intraduction: Pamonda Serbica Panc. is a resurrection plant that can survive a long period of severe dehydrationdesiccation. Desiccation induces cellular membrane integrity loss, protein aggregation, and denaturation, as well as accelerated generation of reactive oxygen species. However, R. serbica can fully recover its metabolic functions already one day upon watering [I].
Aim: to obtain more insight into the mechanisms of desiccation tolerance in R. serblica by differential de novo transcriptomics of hydrated (HL) and desiccated leaves (DL).

Results:

After de nova transcriptame analysis, 184456 transcripts (32.6% with the length between $502-1 k b p$) with 189003 unigenes were annotated with seven common databases. Among obtained unigenes, 64.5% and 42.3% were annotated by NCBI non-redundant protein and nucleatide sequences database (db), 23\% by PFAM db, 22.5\% by Clusters of Drthologous Groups of proteins db. 48.02\% by Swiss-Prot db, 23% KEGG db and I3.73 by Cene Dntology db.

Dur results imply an important role of cell wall structural proteins, GLPs, late embryogenesis abundant proteins (LEAPs), polyphenol oxidases (PPDs), and Cu/Zn SIDs in protective mechanism against desiccation in R. serbicra.

$\alpha \beta$ coil

$3 D$ models of LEAP belonging to LEA2 and The percentage of predicted secondary structure (α-helix, β-strand and random cails) based on consensus amino acid sequence according to Sopma ${ }^{[3]}$ and Fells ${ }^{[4]}$ predictors. SMP: seed maturation proteins

Workflow (wet lab)

TRRzol-based extraction of high-quality RNA from Ramonda serbica ${ }^{[1]}$

Quality control and quantification [1] Synthesis and sequencing of cDNA libraries (I)

Center for Green Technologies, Institute for Multidisciplinary
Research, University of Belgrade

Science Fund of the Republic of Serbia
Program for Excellent Projects of Young Researchers LEAPSyn-SLI \#E039663

