organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(S,S)-N,N'-Bis(1-carboxy-2-methylpropyl)ethylenediammonium dihalide cyclopentanol tetrasolvate (halide = bromide/chloride $\simeq 1:12$)

Bojana B. Zmejkovski,^a Goran N. Kaluderović,^a Santiago Gómez-Ruiz^b and Tibor J. Sabo^c*

^aDepartment of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Studentski trg 14, 11000 Belgrade, Serbia, ^bDepartamento de Química Inorgánica y Analítica, ESCET, Universidad, Rey Juan Carlos, 28933 Móstoles, Madrid, Spain, and ^cFaculty of Chemistry, University of Belgrade, Studentski trg 12-14, PO Box 158, 11000 Belgrade, Serbia Correspondence e-mail: goran@chem.bg.ac.yu

Received 5 February 2009; accepted 23 February 2009

Key indicators: single-crystal X-ray study; T = 130 K; mean σ (C–C) = 0.004 Å; disorder in solvent or counterion; R factor = 0.042; wR factor = 0.104; data-to-parameter ratio = 25.0.

In the crystal structure of the title compound, $C_{12}H_{26}N_2O_4^{2+}$.-2(Br_{0.085}Cl_{0.915})^{-.4}C₅H₉OH, the complete cation is generated by crystallographic twofold symmetry. Contamination of the chloride counter-anion with bromide occured during the preparation, due to the use of 1,2-dibromoethane. One of the solvent molecules is disordered, with occupancies 0.53 (3):0.47 (3). The crystal packing is stabilized by an infinite two dimensional $\cdots X \cdots H - N - H \cdots X \cdots$ hydrogen-bonding network (X: Br⁻/Cl⁻ \simeq 1:12). In addition, O - H $\cdots X$ and O -H $\cdots O$ hydrogen bonds involving solvent molecules are observed.

Related literature

For dihydrochloride salts of the analog ethylenediamine-N,N'diacetic acid and ethylenediamine-N,N'-di-3-propionic acid, see: Mistryukov *et al.* (1987); Shkol'nikova *et al.* (1989, 1990, 1992). For bond lengths and angles in ethylenediammonium-N,N'-di-3-propanoic acid dichloride and similar compounds, see: Kaluderović *et al.* (2004, 2007). For the synthesis, see: Schoenberg *et al.* (1968).

Experimental

Crystal data

Data collection

Oxford Diffraction CCD Oxford Xcalibur S diffractometer Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2009) $T_{\rm min} = 0.981, T_{\rm max} = 0.985$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$
$wR(F^2) = 0.104$
S = 0.98
5795 reflections
232 parameters
92 restraints

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.62 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.37 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), 2602 Friedel pairs Flack parameter: -0.04 (2)

28298 measured reflections

 $R_{\rm int} = 0.035$

5795 independent reflections 4851 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1N \cdots X1$ $N1 - H2N \cdots X1^{i}$ $D1 - H1O \cdots O4^{ii}$ $D4 - H4O \cdots O3$ $D4 - H4O \cdots O3$	0.88 (2)	2.37 (2)	3.253 (2)	175 (2)
	0.93 (2)	2.32 (2)	3.209 (2)	161 (2)
	0.95 (4)	2.50 (4)	3.446 (3)	172 (5)
	0.86 (3)	1.89 (3)	2.728 (2)	165 (3)
$O3 - H3O \cdots Cll$	0.94(3)	2.29 (3)	3.204 (2)	163(2)
$O3 - H3O \cdots Br1$	0.94(3)	2.29 (3)	3.204 (2)	163(2)

Symmetry codes: (i) x, y - 1, z; (ii) -x + 1, y - 1, -z. X1 is the disordered Cl/Br atom.

Data collection: *CrysAlisPro* (Oxford Diffraction, 2009); cell refinement: *CrysAlisPro*; data reduction: *CrysAlisPro*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

The authors are grateful to the Ministry of Science and Technological Development of the Republic of Serbia for financial support (grant No. 142010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2196).

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Kaluderović, G. N., Gómez-Ruiz, S., Schmidt, H. & Steinborn, D. (2007). Acta Cryst. E63, 03491.
- Kaluderović, G. N., Heinemann, F. W., Knežević, N. Ž., Trifunović, S. R. & Sabo, T. J. (2004). J. Chem. Crystallogr. 34, 185–189.
- Mistryukov, V. E., Mikhailov, Yu. N., Sergeev, A. V., Zhuravlov, M. G., Schelokov, R. N., Chernov, A. P., Fodorov, V. A. & Brekhovskikh, M. N. (1987). Dokl. Akad. Nauk SSSR, 295, 1390–1393.

- Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
- Schoenberg, L. N., Cooke, D. W. & Liu, C. F. (1968). Inorg. Chem. 7, 2386– 2393.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Shkol'nikova, L. M., Ilyukhin, A. B., Gasparyan, A. V., Zavodnik, V. E., Poznyak, A. L. & Makarevich, S. S. (1990). *Kristallografiya*, 35, 1421–1424.
- Shkol'nikova, L. M., Sotman, S. S., Poznyak, A. L. & Stoplyanskaya, L. V. (1992). *Kristallografiya*, **37**, 692–695.
- Shkol'nikova, L. M., Suyarov, N. D., Gasparyan, A. V., Poznyak, A. L., Zavodnik, V. E. & Dyaltova, N. M. (1989). *Zh. Strukt. Khim.* **30**, 92–104.

supporting information

Acta Cryst. (2009). E65, o656-o657 [doi:10.1107/S1600536809006679]

(S,S)-N,N'-Bis(1-carboxy-2-methylpropyl)ethylenediammonium dihalide cyclopentanol tetrasolvate (halide = bromide/chloride \approx 1:12)

Bojana B. Zmejkovski, Goran N. Kaluderović, Santiago Gómez-Ruiz and Tibor J. Sabo

S1. Comment

Dihydrochloride salts of the analog ethylenediamine-*N*,*N*'-diacetic acid and ethylenediamine-*N*,*N*'-di-3-propionic acid are reported in the literature, see (Shkol'nikova *et al.*, 1989; Shkol'nikova *et al.*, 1990; Shkol'nikova *et al.*, 1992; Mistryukov *et al.*, 1987).

Crude (*S*,*S*)-ethylenediammonium-*N*,*N*'-di-2-(3-methyl)-butanoic acid dihalide, [(H₄eddv)X₂], obtained from the reaction of L-valine and 1,2-dibromethane (Schoenberg *et al.*,1968), was used for the synthesis of dicyclopentyl ester. The title compound is isolated from the mother liquor as a mixture of Cl and Br salts. The structure consists of several species: one dicationic, $C_{12}H_{26}N_2O_4^{2+}$, 0.17 Br⁻ and 1.83 Cl⁻ anions and four cyclopentanol molecules (Fig. 1). Bond lengths and angles are comparable with those of ethylenediammonium-*N*,*N*'-di-3-propanoic acid dichloride and similar compounds (Kaluđerović *et al.*, 2004, 2007). All of the mentioned species are stabilizing the structure by intramolecular and intermolecular H-bonds (Table 1). The solvent molecules are involved in hydrogen bonding, through O4–H4O···O3 atoms (Fig. 2). Furthermore, the H3O atom bonded to O3 is participating in hydrogen bonding with X atom (X: Br⁻/Cl⁻ \approx 1:12), which is on the other side interacting *via* hydrogen bond with the H1N–N1 moiety. The cyclopentyl rings are in envelope conformations.

S2. Experimental

(S,S)-ethylenediammonium-N,N'-di-2-(3-methyl)-butanoic acid dihalide is obtained as earlier described in literature (Schoenberg *et al.*,1968), by combining the solutions of L-valine and 1,2-dibromoethane. The title compound is obtained unintentionally. The goal was to synthesize a dicyclopentyl ester of (S,S)-ethylenediammonium-N,N'-di-2-(3-methyl)butanoic acid dichloride. Thionyl chloride (4.0 ml, 55 mmol) was introduced into a flask containing cyclopentanol (50 ml, anhydrous conditions) over 1 h. After that (S,S)-ethylenediammonium-N,N'-di-2-(3-methyl)-butanoic acid dihalide (calculated for X=Cl: 2.0 g, 6.00 mmol) was added to the flask and the suspension was refluxed 16 h. The mixture was filtered off and the filtrate was left for a few days at 4 °C yielding crystals suitable for X-ray measurements.

S3. Refinement

The H atoms connected to the nitrogen and oxygen atoms were found in difference maps and yielded reasonable bond lengths and angles (O—H bond length: 0.86 (3) - 0.95 (2) Å); N—H bond length: 0.88 (2) and 0.93 (2) Å), all other H atoms were positioned geometrically and treated as riding, with C—H bonding lengths constrained to 0.98-1.00 Å. The two positions of the disordered Cl- *versus* Br-atoms were determined from the difference map and refined anisotropically with occupancies of 0.915 (Cl) and 0.085 (Br).

Figure 1

ORTEP representation of $[(H_4eddv)X_2]$ ·4C₅H₉OH. The structure contains a 1:12 Br/Cl (X) disorder. The figure displays the Cl-part of this disorder (Cl1). Displacement ellipsoids are plotted at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2

Network of H-bonding.

(*S*,*S*)-*N*,*N*'-Bis(1-carboxy-2- methylpropyl)ethylenediammonium 0.09-bromide 0.91-chloride cyclopentanol tetrasolvate

Crystal data

$C_{12}H_{26}N_2O_4^{2+}\cdot 2(Br_{0.09}Cl_{0.91}^{-})\cdot 4(C_5H_{10}O)$	F(000) = 745.4
$M_r = 685.41$	$D_{\rm x} = 1.202 {\rm Mg} {\rm m}^{-3}$
Monoclinic, C2	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Hall symbol: C 2y	Cell parameters from 12428 reflections
a = 21.2037 (5) Å	$\theta = 2.9 - 32.3^{\circ}$
b = 5.2166 (1) Å	$\mu = 0.39 \text{ mm}^{-1}$
c = 17.2517(5) Å	T = 130 K
$\beta = 97.037(2)^{\circ}$	Needles, colourless
V = 1893.86 (8) Å ³	$0.7 \times 0.04 \times 0.04$ mm
Z = 2	
Data collection	
Oxford Diffraction CCD Oxford Xcalibur S	28298 measured reflections
diffractometer	5795 independent reflections
Graphite monochromator	4851 reflections with $I > 2\sigma(I)$
Detector resolution: 16.356 pixels mm ⁻¹	$R_{\rm int} = 0.035$
ω and φ scans	$\theta_{\text{max}} = 30.5^{\circ}, \ \theta_{\text{min}} = 2.9^{\circ}$
Absorption correction: multi-scan	$h = -30 \rightarrow 30$
(CrysAlis RED; Oxford Diffraction, 2009)	$k = -7 \rightarrow 7$
$T_{\min} = 0.981, T_{\max} = 0.985$	$l = -24 \rightarrow 24$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.042$	H atoms treated by a mixture of independent
$wR(F^2) = 0.104$	and constrained refinement
S = 0.98	$w = 1/[\sigma^2(F_o^2) + (0.0675P)^2]$
5795 reflections	where $P = (F_o^2 + 2F_c^2)/3$
232 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
92 restraints	$\Delta ho_{ m max} = 0.62 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta ho_{\min} = -0.37 \text{ e} \text{ Å}^{-3}$
direct methods	Absolute structure: Flack (1983), 2602 Friedel
Secondary atom site location: difference Fourier	pairs
map	Absolute structure parameter: -0.04 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

-					
	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cl1	0.597627 (15)	0.42698 (6)	-0.072483 (19)	0.02203 (10)	0.914 (2)
Br1	0.597627 (15)	0.42698 (6)	-0.072483 (19)	0.02203 (10)	0.086 (2)
01	0.63329 (7)	0.1414 (3)	0.23276 (8)	0.0340 (3)	
O2	0.58689 (6)	0.3389 (2)	0.12648 (7)	0.0267 (3)	
03	0.52079 (7)	0.6832 (3)	-0.22443 (9)	0.0422 (4)	
O4	0.40459 (9)	0.5428 (4)	-0.29775 (10)	0.0513 (5)	
N1	0.58713 (5)	-0.0783 (3)	0.03571 (7)	0.0172 (2)	
C1	0.51770(7)	-0.1047 (4)	0.04083 (9)	0.0201 (3)	
H1A	0.5029	0.0396	0.0712	0.024*	
H1B	0.5094	-0.2666	0.0677	0.024*	
C2	0.62661 (6)	-0.0867 (4)	0.11390 (8)	0.0184 (3)	
H2	0.6129	-0.2374	0.1435	0.022*	
C3	0.61327 (8)	0.1557 (3)	0.15757 (10)	0.0205 (3)	
C4	0.69721 (7)	-0.1218 (3)	0.10265 (10)	0.0224 (4)	
H4	0.6993	-0.2621	0.0636	0.027*	
C5	0.72565 (9)	0.1159 (4)	0.07002 (13)	0.0325 (4)	
H5A	0.7252	0.2571	0.1074	0.049*	
H5B	0.7006	0.1637	0.0206	0.049*	
H5C	0.7696	0.0805	0.061	0.049*	
C6	0.73642 (9)	-0.2077 (4)	0.17799 (12)	0.0352 (5)	
H6A	0.7802	-0.2417	0.168	0.053*	
H6B	0.718	-0.3643	0.1971	0.053*	
H6C	0.7364	-0.0724	0.2174	0.053*	

C7	0.56429 (12)	0.8890 (5)	-0.23271 (13)	0.0457 (6)	
H7	0.5722	0.9917	-0.1835	0.055*	
C8	0.53654 (16)	1.0530 (6)	-0.29992 (19)	0.0644 (8)	
H8A	0.4897	1.0364	-0.3083	0.077*	
H8B	0.5477	1.2354	-0.2903	0.077*	
С9	0.5648 (3)	0.9555 (15)	-0.3675 (2)	0.137 (2)	
H9A	0.5313	0.8773	-0.405	0.164*	
H9B	0.5837	1.0998	-0.394	0.164*	
C10	0.6126 (5)	0.7700 (16)	-0.3447 (4)	0.065 (3)	0.53 (3)
H10A	0.6514	0.8074	-0.3693	0.078*	0.53 (3)
H10B	0.5974	0.5964	-0.3608	0.078*	0.53 (3)
C10B	0.6295 (7)	0.875 (6)	-0.3364 (7)	0.120 (6)	0.47 (3)
H10C	0.6441	0.7349	-0.3687	0.144*	0.47 (3)
H10D	0.6594	1.0202	-0.3365	0.144*	0.47 (3)
C11	0.62670 (13)	0.7854 (7)	-0.2568 (2)	0.0678 (8)	
H11A	0.6369	0.6143	-0.2337	0.081*	
H11B	0.6625	0.9036	-0.2408	0.081*	
C12	0.38374 (13)	0.6636 (5)	-0.37004 (13)	0.0477 (6)	
H12	0.3969	0.8479	-0.3686	0.057*	
C13	0.40779 (19)	0.5284 (12)	-0.4380 (2)	0.115 (2)	
H13A	0.446	0.4245	-0.4205	0.138*	
H13B	0.4182	0.6525	-0.478	0.138*	
C14	0.3485 (2)	0.3475 (7)	-0.47177 (19)	0.0811 (11)	
H14A	0.3321	0.3974	-0.5259	0.097*	
H14B	0.3616	0.1653	-0.4716	0.097*	
C15	0.30020 (19)	0.3870 (9)	-0.41962 (19)	0.0827 (11)	
H15A	0.3037	0.2558	-0.3779	0.099*	
H15B	0.257	0.3791	-0.4488	0.099*	
C16	0.31332 (17)	0.6412 (7)	-0.38706 (19)	0.0699 (9)	
H16A	0.2933	0.6627	-0.3386	0.084*	
H16B	0.2964	0.7743	-0.4249	0.084*	
H1N	0.5902 (10)	0.065 (4)	0.0092 (12)	0.018 (5)*	
H2N	0.6002 (12)	-0.213 (4)	0.0066 (14)	0.044 (7)*	
H4O	0.4439 (15)	0.568 (6)	-0.2807 (17)	0.060 (9)*	
H3O	0.5371 (13)	0.581 (6)	-0.1818 (14)	0.062 (9)*	
H1O	0.627 (3)	-0.029 (6)	0.250 (4)	0.23 (3)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.02064 (15)	0.01766 (14)	0.02759 (17)	0.00010 (16)	0.00212 (11)	0.00040 (17)
Br1	0.02064 (15)	0.01766 (14)	0.02759 (17)	0.00010 (16)	0.00212 (11)	0.00040 (17)
01	0.0468 (8)	0.0297 (7)	0.0232 (7)	0.0082 (6)	-0.0050 (6)	-0.0016 (5)
O2	0.0360 (7)	0.0161 (5)	0.0271 (6)	0.0043 (5)	-0.0004(5)	-0.0021 (5)
O3	0.0404 (8)	0.0446 (9)	0.0399 (9)	-0.0104 (7)	-0.0017 (7)	0.0096 (7)
O4	0.0491 (10)	0.0571 (10)	0.0427 (10)	-0.0191 (9)	-0.0137 (8)	0.0288 (8)
N1	0.0150 (5)	0.0144 (5)	0.0218 (6)	-0.0013 (7)	0.0011 (4)	-0.0021 (8)
C1	0.0136 (6)	0.0233 (9)	0.0234 (7)	-0.0005 (6)	0.0017 (5)	0.0009 (7)

supporting information

C2	0.0182 (6)	0.0148 (6)	0.0214 (6)	-0.0010 (8)	-0.0008 (5)	0.0001 (8)
C3	0.0189 (7)	0.0184 (7)	0.0241 (8)	-0.0038 (6)	0.0018 (6)	-0.0020 (6)
C4	0.0170 (6)	0.0190 (10)	0.0302 (8)	0.0027 (5)	-0.0004 (6)	-0.0008 (6)
C5	0.0180 (8)	0.0337 (10)	0.0461 (12)	0.0008 (7)	0.0057 (8)	0.0089 (9)
C6	0.0255 (9)	0.0337 (11)	0.0439 (12)	0.0065 (8)	-0.0057 (8)	0.0047 (9)
C7	0.0586 (13)	0.0411 (15)	0.0388 (11)	-0.0170 (11)	0.0114 (10)	-0.0112 (10)
C8	0.075 (2)	0.0423 (14)	0.079 (2)	0.0001 (14)	0.0223 (16)	0.0113 (14)
C9	0.146 (4)	0.217 (7)	0.055 (2)	0.058 (5)	0.040 (2)	0.043 (3)
C10	0.082 (5)	0.067 (5)	0.053 (4)	-0.013 (3)	0.039 (4)	-0.018 (3)
C10B	0.075 (6)	0.197 (15)	0.097 (7)	0.001 (10)	0.043 (5)	-0.011 (10)
C11	0.0410 (14)	0.076 (2)	0.086 (2)	-0.0124 (14)	0.0061 (14)	0.0102 (18)
C12	0.0605 (15)	0.0477 (14)	0.0316 (11)	-0.0060 (12)	-0.0078 (10)	0.0176 (10)
C13	0.085 (3)	0.205 (6)	0.056 (2)	0.059 (3)	0.0158 (18)	0.038 (3)
C14	0.132 (3)	0.0586 (19)	0.0527 (17)	-0.0053 (19)	0.011 (2)	-0.0057 (14)
C15	0.097 (2)	0.085 (3)	0.0592 (18)	-0.005 (2)	-0.0168 (17)	0.0057 (18)
C16	0.075 (2)	0.071 (2)	0.0564 (17)	0.0054 (17)	-0.0213 (15)	0.0075 (16)

Geometric parameters (Å, °)

01—C3	1.317 (2)	С8—С9	1.466 (5)
01—H10	0.95 (2)	C8—H8A	0.99
O2—C3	1.200 (2)	C8—H8B	0.99
O3—C7	1.434 (3)	C9—C10	1.421 (9)
O3—H3O	0.939 (17)	C9—C10B	1.472 (12)
O4—C12	1.419 (2)	С9—Н9А	0.99
O4—H4O	0.86 (3)	С9—Н9В	0.99
N1-C1	1.4919 (18)	C10—C11	1.512 (8)
N1—C2	1.4986 (18)	C10—H10A	0.99
N1—H1N	0.88 (2)	C10—H10B	0.99
N1—H2N	0.925 (17)	C10B—C11	1.458 (11)
C1-C1 ⁱ	1.513 (3)	C10B—H10C	0.99
C1—H1A	0.99	C10B—H10D	0.99
C1—H1B	0.99	C11—H11A	0.99
C2—C3	1.516 (3)	C11—H11B	0.99
C2—C4	1.544 (2)	C12—C16	1.491 (4)
C2—H2	1	C12—C13	1.510 (5)
C4—C5	1.517 (2)	C12—H12	1
C4—C6	1.522 (3)	C13—C14	1.622 (6)
C4—H4	1	C13—H13A	0.99
С5—Н5А	0.98	C13—H13B	0.99
С5—Н5В	0.98	C14—C15	1.458 (5)
С5—Н5С	0.98	C14—H14A	0.99
С6—Н6А	0.98	C14—H14B	0.99
C6—H6B	0.98	C15—C16	1.454 (5)
С6—Н6С	0.98	C15—H15A	0.99
С7—С8	1.502 (4)	C15—H15B	0.99
C7—C11	1.533 (4)	C16—H16A	0.99
С7—Н7	1	C16—H16B	0.99

C3—O1—H1O	108 (4)	С8—С9—Н9А	109.4
С7—О3—НЗО	108.9 (19)	С10В—С9—Н9А	133.1
C12—O4—H4O	115 (2)	С10—С9—Н9В	109.4
C1—N1—C2	112.98 (11)	С8—С9—Н9В	109.4
C1—N1—H1N	104.2 (14)	C10B—C9—H9B	88.7
C2—N1—H1N	114.9 (14)	H9A—C9—H9B	108
C1—N1—H2N	109.0 (16)	C9—C10—C11	106.7 (4)
C2—N1—H2N	107.1 (17)	C9—C10—H10A	110.4
H1N—N1—H2N	108.5 (18)	C11—C10—H10A	110.4
$N1 - C1 - C1^{i}$	108.99 (15)	C9-C10-H10B	110.4
N1—C1—H1A	109.9	C11-C10-H10B	110.4
C1 ⁱ —C1—H1A	109.9	H10A—C10—H10B	108.6
N1—C1—H1B	109.9	C11—C10B—C9	106.9 (7)
C1 ⁱ —C1—H1B	109.9	C11—C10B—H10C	110.3
H1A—C1—H1B	108.3	C9-C10B-H10C	110.3
N1—C2—C3	107.77 (15)	C11—C10B—H10D	110.3
N1-C2-C4	109.49 (12)	C9—C10B—H10D	110.3
C3—C2—C4	113.84 (14)	H10C—C10B—H10D	108.6
N1—C2—H2	108.5	C10B—C11—C7	106.2 (5)
C3—C2—H2	108.5	C7—C11—C10	102.7 (4)
C4—C2—H2	108.5	C10B—C11—H11A	129.4
O2—C3—O1	124.15 (16)	C7—C11—H11A	111.2
O2—C3—C2	123.18 (15)	C10—C11—H11A	111.2
O1—C3—C2	112.66 (14)	C10B—C11—H11B	86.8
C5—C4—C6	110.92 (15)	C7—C11—H11B	111.2
C5—C4—C2	112.68 (14)	C10-C11-H11B	111.2
C6—C4—C2	111.35 (15)	H11A—C11—H11B	109.1
C5—C4—H4	107.2	O4—C12—C16	109.6 (2)
С6—С4—Н4	107.2	O4—C12—C13	112.1 (3)
C2—C4—H4	107.2	C16—C12—C13	103.6 (3)
С4—С5—Н5А	109.5	O4—C12—H12	110.4
C4—C5—H5B	109.5	C16—C12—H12	110.4
H5A—C5—H5B	109.5	C13—C12—H12	110.4
C4—C5—H5C	109.5	C12—C13—C14	103.3 (3)
H5A—C5—H5C	109.5	С12—С13—Н13А	111.1
H5B—C5—H5C	109.5	C14—C13—H13A	111.1
C4—C6—H6A	109.5	C12—C13—H13B	111.1
C4—C6—H6B	109.5	C14—C13—H13B	111.1
H6A—C6—H6B	109.5	H13A—C13—H13B	109.1
C4—C6—H6C	109.5	C15—C14—C13	105.6 (3)
H6A—C6—H6C	109.5	C15—C14—H14A	110.6
H6B—C6—H6C	109.5	C13—C14—H14A	110.6
O3—C7—C8	107.9 (2)	C15—C14—H14B	110.6
O3—C7—C11	110.5 (2)	C13—C14—H14B	110.6
C8—C7—C11	105.2 (2)	H14A—C14—H14B	108.8
O3—C7—H7	111	C14—C15—C16	104.6 (4)
С8—С7—Н7	111	C14—C15—H15A	110.8

С11—С7—Н7	111	C16—C15—H15A	110.8	
С9—С8—С7	104.9 (3)	C14—C15—H15B	110.8	
С9—С8—Н8А	110.8	C16—C15—H15B	110.8	
С7—С8—Н8А	110.8	H15A—C15—H15B	108.9	
С9—С8—Н8В	110.8	C15—C16—C12	106.7 (3)	
С7—С8—Н8В	110.8	C15—C16—H16A	110.4	
H8A—C8—H8B	108.8	C12—C16—H16A	110.4	
С10—С9—С8	111.3 (4)	C15—C16—H16B	110.4	
C8—C9—C10B	105.3 (7)	C12—C16—H16B	110.4	
С10—С9—Н9А	109.4	H16A—C16—H16B	108.6	

Symmetry code: (i) -x+1, y, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
N1—H1 <i>N</i> …Cl1	0.88 (2)	2.37 (2)	3.253 (2)	175 (2)
N1—H2N····Cl1 ⁱⁱ	0.93 (2)	2.32 (2)	3.209 (2)	161 (2)
N1—H2N···Br1 ⁱⁱ	0.93 (2)	2.32 (2)	3.209 (2)	161 (2)
N1—H1 <i>N</i> ···Br1	0.88 (2)	2.37 (2)	3.253 (2)	175 (2)
01—H1 <i>0</i> ···O4 ⁱⁱⁱ	0.95 (4)	2.50 (4)	3.446 (3)	172 (5)
O4—H4 <i>O</i> ···O3	0.86 (3)	1.89 (3)	2.728 (2)	165 (3)
O3—H3 <i>O</i> ···Cl1	0.94 (3)	2.29 (3)	3.204 (2)	163 (2)
O3—H3 <i>O</i> …Br1	0.94 (3)	2.29 (3)	3.204 (2)	163 (2)
C1—H1A····O2	0.99	2.47	3.027 (2)	115
C1—H1B····Cl1 ⁱⁱⁱ	0.99	2.79	3.5460 (18)	134
C2—H2…O2 ⁱⁱ	1.00	2.29	3.127 (2)	141
C6—H6 <i>C</i> ···O1	0.98	2.50	3.082 (3)	118

Symmetry codes: (ii) *x*, *y*–1, *z*; (iii) –*x*+1, *y*–1, –*z*.