Ferdinand, Belaj

Link to this page

Authority KeyName Variants
5982a83b-6f56-4ee6-aff3-5e82ada8f760
  • Ferdinand, Belaj (1)
Projects

Author's Bibliography

Oxorhenium(V) complexes with N,O ligands – synthesis and biological studies

Petrović, Tamara; Gligorijević, Nevenka; Ferdinand, Belaj; Poljarević, Jelena; Mihajlović-Lalić, Ljiljana; Aranđelović, Sandra; Nikolić, Stefan; Grgurić-Šipka, Sanja

(2023)

TY  - CONF
AU  - Petrović, Tamara
AU  - Gligorijević, Nevenka
AU  - Ferdinand, Belaj
AU  - Poljarević, Jelena
AU  - Mihajlović-Lalić, Ljiljana
AU  - Aranđelović, Sandra
AU  - Nikolić, Stefan
AU  - Grgurić-Šipka, Sanja
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5957
AB  - Rhenium complexes merit particular attention in the area of metallodrug design due to
rhenium’s broad spectrum of oxidation states and consequently, the possibility to design
compounds of great structural diversity [1,2]. Thus, the synthesis, chemical characterization,
and antitumor activity in vitro of the six Re(V) complexes are described. Novel compounds
were obtained via reaction of [ReOCl3(PPh3)2] with corresponding ligands (pyridine-2-
carboxylic acid, 3-methylpyridine-2-carboxylic acid, 6-methylpyridine-2-carboxylic acid, 2,3-
pyridinedicarboxylic acid, 2,5-pyridinedicarboxylic acid, and 2,6-pyridinedicarboxylic acid) in
acetonitrile or dichloromethane/methanol at 78 °C for 3h. The complexes were fully
characterized using NMR, IR, MS, and elemental analysis. Results of X-ray diffraction analysis
for three of these compounds confirmed the proposed octahedral geometry with bidentate
coordinated ligands, via both oxygen and nitrogen atoms. The antiproliferative effect was
determined by MTT assay. All complexes expressed moderate to low cytotoxic potential.
Complex with pyridine-2-carboxylic acid showed dose-dependent cytotoxic potential,
particularly toward triple-negative breast adenocarcinoma cells MDA-MB-231 and pancreatic
adenocarcinoma cells PANC-1. Drug combination studies in PANC-1 cells with that complex
and Verapamil hydrochloride (VRP) showed a slight arrest of the cell cycle in the S phase and
also increase its antiproliferative potential.
C3  - 16th International Symposium on Applied Bioinorganic Chemistry (16-ISABC), Ioannina, Greece, June 11-14, 2023
T1  - Oxorhenium(V) complexes with N,O ligands – synthesis and biological studies
SP  - 241
EP  - 241
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5957
ER  - 
@conference{
author = "Petrović, Tamara and Gligorijević, Nevenka and Ferdinand, Belaj and Poljarević, Jelena and Mihajlović-Lalić, Ljiljana and Aranđelović, Sandra and Nikolić, Stefan and Grgurić-Šipka, Sanja",
year = "2023",
abstract = "Rhenium complexes merit particular attention in the area of metallodrug design due to
rhenium’s broad spectrum of oxidation states and consequently, the possibility to design
compounds of great structural diversity [1,2]. Thus, the synthesis, chemical characterization,
and antitumor activity in vitro of the six Re(V) complexes are described. Novel compounds
were obtained via reaction of [ReOCl3(PPh3)2] with corresponding ligands (pyridine-2-
carboxylic acid, 3-methylpyridine-2-carboxylic acid, 6-methylpyridine-2-carboxylic acid, 2,3-
pyridinedicarboxylic acid, 2,5-pyridinedicarboxylic acid, and 2,6-pyridinedicarboxylic acid) in
acetonitrile or dichloromethane/methanol at 78 °C for 3h. The complexes were fully
characterized using NMR, IR, MS, and elemental analysis. Results of X-ray diffraction analysis
for three of these compounds confirmed the proposed octahedral geometry with bidentate
coordinated ligands, via both oxygen and nitrogen atoms. The antiproliferative effect was
determined by MTT assay. All complexes expressed moderate to low cytotoxic potential.
Complex with pyridine-2-carboxylic acid showed dose-dependent cytotoxic potential,
particularly toward triple-negative breast adenocarcinoma cells MDA-MB-231 and pancreatic
adenocarcinoma cells PANC-1. Drug combination studies in PANC-1 cells with that complex
and Verapamil hydrochloride (VRP) showed a slight arrest of the cell cycle in the S phase and
also increase its antiproliferative potential.",
journal = "16th International Symposium on Applied Bioinorganic Chemistry (16-ISABC), Ioannina, Greece, June 11-14, 2023",
title = "Oxorhenium(V) complexes with N,O ligands – synthesis and biological studies",
pages = "241-241",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5957"
}
Petrović, T., Gligorijević, N., Ferdinand, B., Poljarević, J., Mihajlović-Lalić, L., Aranđelović, S., Nikolić, S.,& Grgurić-Šipka, S.. (2023). Oxorhenium(V) complexes with N,O ligands – synthesis and biological studies. in 16th International Symposium on Applied Bioinorganic Chemistry (16-ISABC), Ioannina, Greece, June 11-14, 2023, 241-241.
https://hdl.handle.net/21.15107/rcub_cherry_5957
Petrović T, Gligorijević N, Ferdinand B, Poljarević J, Mihajlović-Lalić L, Aranđelović S, Nikolić S, Grgurić-Šipka S. Oxorhenium(V) complexes with N,O ligands – synthesis and biological studies. in 16th International Symposium on Applied Bioinorganic Chemistry (16-ISABC), Ioannina, Greece, June 11-14, 2023. 2023;:241-241.
https://hdl.handle.net/21.15107/rcub_cherry_5957 .
Petrović, Tamara, Gligorijević, Nevenka, Ferdinand, Belaj, Poljarević, Jelena, Mihajlović-Lalić, Ljiljana, Aranđelović, Sandra, Nikolić, Stefan, Grgurić-Šipka, Sanja, "Oxorhenium(V) complexes with N,O ligands – synthesis and biological studies" in 16th International Symposium on Applied Bioinorganic Chemistry (16-ISABC), Ioannina, Greece, June 11-14, 2023 (2023):241-241,
https://hdl.handle.net/21.15107/rcub_cherry_5957 .